ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.02557
9
2

BOgen: Generating Part-Level 3D Designs Based on User Intention Inference through Bayesian Optimization and Variational Autoencoder

5 December 2023
Seung Won Lee
Jiin Choi
Kyung-Hoon Hyun
ArXivPDFHTML
Abstract

Advancements in generative artificial intelligence (AI) have introduced various AI models capable of producing impressive visual design outputs. However, when it comes to AI models in the design process, prioritizing outputs that align with designers' needs over mere visual craftsmanship becomes even more crucial. Furthermore, designers often intricately combine parts of various designs to create novel designs. The ability to generate designs that align with the designers' intentions at the part level is pivotal for assisting designers. Hence, we introduced BOgen, which empowers designers to proactively generate and explore part-level designs through Bayesian optimization and variational autoencoders, thereby enhancing their overall user experience. We assessed BOgen's performance using a study involving 30 designers. The results revealed that, compared to the baseline, BOgen fulfilled the designer requirements for part recommendations and design exploration space guidance. BOgen assists designers in navigation and development, offering valuable design suggestions and fosters proactive design exploration and creation.

View on arXiv
Comments on this paper