ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.03849
18
14

LEGO: Learning EGOcentric Action Frame Generation via Visual Instruction Tuning

6 December 2023
Bolin Lai
Xiaoliang Dai
Lawrence Chen
Guan Pang
James M. Rehg
Miao Liu
ArXivPDFHTML
Abstract

Generating instructional images of human daily actions from an egocentric viewpoint serves as a key step towards efficient skill transfer. In this paper, we introduce a novel problem -- egocentric action frame generation. The goal is to synthesize an image depicting an action in the user's context (i.e., action frame) by conditioning on a user prompt and an input egocentric image. Notably, existing egocentric action datasets lack the detailed annotations that describe the execution of actions. Additionally, existing diffusion-based image manipulation models are sub-optimal in controlling the state transition of an action in egocentric image pixel space because of the domain gap. To this end, we propose to Learn EGOcentric (LEGO) action frame generation via visual instruction tuning. First, we introduce a prompt enhancement scheme to generate enriched action descriptions from a visual large language model (VLLM) by visual instruction tuning. Then we propose a novel method to leverage image and text embeddings from the VLLM as additional conditioning to improve the performance of a diffusion model. We validate our model on two egocentric datasets -- Ego4D and Epic-Kitchens. Our experiments show substantial improvement over prior image manipulation models in both quantitative and qualitative evaluation. We also conduct detailed ablation studies and analysis to provide insights in our method. More details of the dataset and code are available on the website (https://bolinlai.github.io/Lego_EgoActGen/).

View on arXiv
Comments on this paper