410

Self-Guided Open-Vocabulary Semantic Segmentation

Abstract

Vision-Language Models (VLMs) have emerged as promising tools for open-ended image understanding tasks, including open vocabulary segmentation. Yet, direct application of such VLMs to segmentation is non-trivial, since VLMs are trained with image-text pairs and naturally lack pixel-level granularity. Recent works have made advancements in bridging this gap, often by leveraging the shared image-text space in which the image and a provided text prompt are represented. In this paper, we challenge the capabilities of VLMs further and tackle open-vocabulary segmentation without the need for any textual input. To this end, we propose a novel Self-Guided Semantic Segmentation (Self-Seg) framework. Self-Seg is capable of automatically detecting relevant class names from clustered BLIP embeddings and using these for accurate semantic segmentation. In addition, we propose an LLM-based Open-Vocabulary Evaluator (LOVE) to effectively assess predicted open-vocabulary class names. We achieve state-of-the-art results on Pascal VOC, ADE20K and CityScapes for open-vocabulary segmentation without given class names, as well as competitive performance with methods where class names are given. All code and data will be released.

View on arXiv
Comments on this paper