ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.05034
6
0

Grasp Force Optimization as a Bilinear Matrix Inequality Problem: A Deep Learning Approach

8 December 2023
Hirakjyoti Basumatary
Daksh Adhar
Riddhiman Shaw
S. Hazarika
ArXivPDFHTML
Abstract

Grasp force synthesis is a non-convex optimization problem involving constraints that are bilinear. Traditional approaches to this problem involve general-purpose gradient-based nonlinear optimization and semi-definite programming. With a view towards dealing with postural synergies and non-smooth but convex positive semidefinite constraints, we look beyond gradient-based optimization. The focus of this paper is to undertake a grasp analysis of biomimetic grasping in multi-fingered robotic hands as a bilinear matrix inequality (BMI) problem. Our analysis is to solve it using a deep learning approach to make the algorithm efficiently generate force closure grasps with optimal grasp quality on untrained/unseen objects.

View on arXiv
Comments on this paper