ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.05430
24
10

FT2TF: First-Person Statement Text-To-Talking Face Generation

9 December 2023
Xingjian Diao
Ming Cheng
Wayner Barrios
SouYoung Jin
ArXivPDFHTML
Abstract

Talking face generation has gained immense popularity in the computer vision community, with various applications including AR/VR, teleconferencing, digital assistants, and avatars. Traditional methods are mainly audio-driven ones which have to deal with the inevitable resource-intensive nature of audio storage and processing. To address such a challenge, we propose FT2TF - First-Person Statement Text-To-Talking Face Generation, a novel one-stage end-to-end pipeline for talking face generation driven by first-person statement text. Moreover, FT2TF implements accurate manipulation of the facial expressions by altering the corresponding input text. Different from previous work, our model only leverages visual and textual information without any other sources (e.g. audio/landmark/pose) during inference. Extensive experiments are conducted on LRS2 and LRS3 datasets, and results on multi-dimensional evaluation metrics are reported. Both quantitative and qualitative results showcase that FT2TF outperforms existing relevant methods and reaches the state-of-the-art. This achievement highlights our model capability to bridge first-person statements and dynamic face generation, providing insightful guidance for future work.

View on arXiv
Comments on this paper