ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.05551
22
3

Multi-dimensional Fair Federated Learning

9 December 2023
Cong Su
Guoxian Yu
Jun Wang
Hui Li
Qingzhong Li
Han Yu
    FedML
ArXivPDFHTML
Abstract

Federated learning (FL) has emerged as a promising collaborative and secure paradigm for training a model from decentralized data without compromising privacy. Group fairness and client fairness are two dimensions of fairness that are important for FL. Standard FL can result in disproportionate disadvantages for certain clients, and it still faces the challenge of treating different groups equitably in a population. The problem of privately training fair FL models without compromising the generalization capability of disadvantaged clients remains open. In this paper, we propose a method, called mFairFL, to address this problem and achieve group fairness and client fairness simultaneously. mFairFL leverages differential multipliers to construct an optimization objective for empirical risk minimization with fairness constraints. Before aggregating locally trained models, it first detects conflicts among their gradients, and then iteratively curates the direction and magnitude of gradients to mitigate these conflicts. Theoretical analysis proves mFairFL facilitates the fairness in model development. The experimental evaluations based on three benchmark datasets show significant advantages of mFairFL compared to seven state-of-the-art baselines.

View on arXiv
Comments on this paper