ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.07622
52
12

Mathematical Language Models: A Survey

3 January 2025
W. Liu
Hanglei Hu
Jie Zhou
Yuyang Ding
Junsong Li
Jiayi Zeng
Mengliang He
Qin Chen
Bo Jiang
Aimin Zhou
Liang He
    LRM
ArXivPDFHTML
Abstract

In recent years, there has been remarkable progress in leveraging Language Models (LMs), encompassing Pre-trained Language Models (PLMs) and Large-scale Language Models (LLMs), within the domain of mathematics. This paper conducts a comprehensive survey of mathematical LMs, systematically categorizing pivotal research endeavors from two distinct perspectives: tasks and methodologies. The landscape reveals a large number of proposed mathematical LLMs, which are further delineated into instruction learning, tool-based methods, fundamental CoT techniques, advanced CoT methodologies and multi-modal methods. To comprehend the benefits of mathematical LMs more thoroughly, we carry out an in-depth contrast of their characteristics and performance. In addition, our survey entails the compilation of over 60 mathematical datasets, including training datasets, benchmark datasets, and augmented datasets. Addressing the primary challenges and delineating future trajectories within the field of mathematical LMs, this survey is poised to facilitate and inspire future innovation among researchers invested in advancing this domain.

View on arXiv
Comments on this paper