ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.07885
29
18

RAT: Reinforcement-Learning-Driven and Adaptive Testing for Vulnerability Discovery in Web Application Firewalls

13 December 2023
M. Amouei
Mohsen Rezvani
Mansoor Fateh
    AAML
ArXiv (abs)PDFHTML
Abstract

Due to the increasing sophistication of web attacks, Web Application Firewalls (WAFs) have to be tested and updated regularly to resist the relentless flow of web attacks. In practice, using a brute-force attack to discover vulnerabilities is infeasible due to the wide variety of attack patterns. Thus, various black-box testing techniques have been proposed in the literature. However, these techniques suffer from low efficiency. This paper presents Reinforcement-Learning-Driven and Adaptive Testing (RAT), an automated black-box testing strategy to discover injection vulnerabilities in WAFs. In particular, we focus on SQL injection and Cross-site Scripting, which have been among the top ten vulnerabilities over the past decade. More specifically, RAT clusters similar attack samples together. It then utilizes a reinforcement learning technique combined with a novel adaptive search algorithm to discover almost all bypassing attack patterns efficiently. We compare RAT with three state-of-the-art methods considering their objectives. The experiments show that RAT performs 33.53% and 63.16% on average better than its counterparts in discovering the most possible bypassing payloads and reducing the number of attempts before finding the first bypassing payload when testing well-configured WAFs, respectively.

View on arXiv
Comments on this paper