ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.08962
4
35

Depicting Beyond Scores: Advancing Image Quality Assessment through Multi-modal Language Models

14 December 2023
Zhiyuan You
Zheyuan Li
Jinjin Gu
Zhenfei Yin
Tianfan Xue
Chao Dong
    EGVM
ArXivPDFHTML
Abstract

We introduce a Depicted image Quality Assessment method (DepictQA), overcoming the constraints of traditional score-based methods. DepictQA allows for detailed, language-based, human-like evaluation of image quality by leveraging Multi-modal Large Language Models (MLLMs). Unlike conventional Image Quality Assessment (IQA) methods relying on scores, DepictQA interprets image content and distortions descriptively and comparatively, aligning closely with humans' reasoning process. To build the DepictQA model, we establish a hierarchical task framework, and collect a multi-modal IQA training dataset. To tackle the challenges of limited training data and multi-image processing, we propose to use multi-source training data and specialized image tags. These designs result in a better performance of DepictQA than score-based approaches on multiple benchmarks. Moreover, compared with general MLLMs, DepictQA can generate more accurate reasoning descriptive languages. We also demonstrate that our full-reference dataset can be extended to non-reference applications. These results showcase the research potential of multi-modal IQA methods. Codes and datasets are available in https://depictqa.github.io.

View on arXiv
Comments on this paper