ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09305
8
15

Stable Score Distillation for High-Quality 3D Generation

14 December 2023
Boshi Tang
Jianan Wang
Zhiyong Wu
Lei Zhang
ArXivPDFHTML
Abstract

Although Score Distillation Sampling (SDS) has exhibited remarkable performance in conditional 3D content generation, a comprehensive understanding of its formulation is still lacking, hindering the development of 3D generation. In this work, we decompose SDS as a combination of three functional components, namely mode-seeking, mode-disengaging and variance-reducing terms, analyzing the properties of each. We show that problems such as over-smoothness and implausibility result from the intrinsic deficiency of the first two terms and propose a more advanced variance-reducing term than that introduced by SDS. Based on the analysis, we propose a simple yet effective approach named Stable Score Distillation (SSD) which strategically orchestrates each term for high-quality 3D generation and can be readily incorporated to various 3D generation frameworks and 3D representations. Extensive experiments validate the efficacy of our approach, demonstrating its ability to generate high-fidelity 3D content without succumbing to issues such as over-smoothness.

View on arXiv
Comments on this paper