ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.09489
14
3

Multi-stage Learning for Radar Pulse Activity Segmentation

15 December 2023
Zi Huang
Akila Pemasiri
Simon Denman
Clinton Fookes
Terrence Martin
ArXivPDFHTML
Abstract

Radio signal recognition is a crucial function in electronic warfare. Precise identification and localisation of radar pulse activities are required by electronic warfare systems to produce effective countermeasures. Despite the importance of these tasks, deep learning-based radar pulse activity recognition methods have remained largely underexplored. While deep learning for radar modulation recognition has been explored previously, classification tasks are generally limited to short and non-interleaved IQ signals, limiting their applicability to military applications. To address this gap, we introduce an end-to-end multi-stage learning approach to detect and localise pulse activities of interleaved radar signals across an extended time horizon. We propose a simple, yet highly effective multi-stage architecture for incrementally predicting fine-grained segmentation masks that localise radar pulse activities across multiple channels. We demonstrate the performance of our approach against several reference models on a novel radar dataset, while also providing a first-of-its-kind benchmark for radar pulse activity segmentation.

View on arXiv
Comments on this paper