ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10270
18
0

Random Models for Fuzzy Clustering Similarity Measures

16 December 2023
Ryan DeWolfe
Jeffery L. Andrews
ArXiv (abs)PDFHTML
Abstract

The Adjusted Rand Index (ARI) is a widely used method for comparing hard clusterings, but requires a choice of random model that is often left implicit. Several recent works have extended the Rand Index to fuzzy clusterings, but the assumptions of the most common random model is difficult to justify in fuzzy settings. We propose a single framework for computing the ARI with three random models that are intuitive and explainable for both hard and fuzzy clusterings, along with the benefit of lower computational complexity. The theory and assumptions of the proposed models are contrasted with the existing permutation model. Computations on synthetic and benchmark data show that each model has distinct behaviour, meaning that accurate model selection is important for the reliability of results.

View on arXiv
Comments on this paper