ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10669
28
0

Analisis Eksploratif Dan Augmentasi Data NSL-KDD Menggunakan Deep Generative Adversarial Networks Untuk Meningkatkan Performa Algoritma Extreme Gradient Boosting Dalam Klasifikasi Jenis Serangan Siber

17 December 2023
Kevin Putra Santoso
F. A. Madany
H. Suryotrisongko
ArXiv (abs)PDFHTML
Abstract

This study proposes the implementation of Deep Generative Adversarial Networks (GANs) for augmenting the NSL-KDD dataset. The primary objective is to enhance the efficacy of eXtreme Gradient Boosting (XGBoost) in the classification of cyber-attacks on the NSL-KDD dataset. As a result, the method proposed in this research achieved an accuracy of 99.53% using the XGBoost model without data augmentation with GAN, and 99.78% with data augmentation using GAN.

View on arXiv
Comments on this paper