ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.10952
13
0

Soft Alignment of Modality Space for End-to-end Speech Translation

18 December 2023
Yuhao Zhang
Kaiqi Kou
Bei Li
Chen Xu
Chunliang Zhang
Tong Xiao
Jingbo Zhu
ArXivPDFHTML
Abstract

End-to-end Speech Translation (ST) aims to convert speech into target text within a unified model. The inherent differences between speech and text modalities often impede effective cross-modal and cross-lingual transfer. Existing methods typically employ hard alignment (H-Align) of individual speech and text segments, which can degrade textual representations. To address this, we introduce Soft Alignment (S-Align), using adversarial training to align the representation spaces of both modalities. S-Align creates a modality-invariant space while preserving individual modality quality. Experiments on three languages from the MuST-C dataset show S-Align outperforms H-Align across multiple tasks and offers translation capabilities on par with specialized translation models.

View on arXiv
Comments on this paper