ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.11967
25
23

Context Disentangling and Prototype Inheriting for Robust Visual Grounding

19 December 2023
Wei Tang
Liang Li
Xuejing Liu
Lu Jin
Jinhui Tang
Zechao Li
ArXivPDFHTML
Abstract

Visual grounding (VG) aims to locate a specific target in an image based on a given language query. The discriminative information from context is important for distinguishing the target from other objects, particularly for the targets that have the same category as others. However, most previous methods underestimate such information. Moreover, they are usually designed for the standard scene (without any novel object), which limits their generalization to the open-vocabulary scene. In this paper, we propose a novel framework with context disentangling and prototype inheriting for robust visual grounding to handle both scenes. Specifically, the context disentangling disentangles the referent and context features, which achieves better discrimination between them. The prototype inheriting inherits the prototypes discovered from the disentangled visual features by a prototype bank to fully utilize the seen data, especially for the open-vocabulary scene. The fused features, obtained by leveraging Hadamard product on disentangled linguistic and visual features of prototypes to avoid sharp adjusting the importance between the two types of features, are then attached with a special token and feed to a vision Transformer encoder for bounding box regression. Extensive experiments are conducted on both standard and open-vocabulary scenes. The performance comparisons indicate that our method outperforms the state-of-the-art methods in both scenarios. {The code is available at https://github.com/WayneTomas/TransCP.

View on arXiv
Comments on this paper