ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.12806
31
15

MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models

20 December 2023
Yan Cai
Linlin Wang
Ye Wang
Gerard de Melo
Ya-Qin Zhang
Yanfeng Wang
Liang He
    AI4MH
    ELM
    LM&MA
ArXivPDFHTML
Abstract

The emergence of various medical large language models (LLMs) in the medical domain has highlighted the need for unified evaluation standards, as manual evaluation of LLMs proves to be time-consuming and labor-intensive. To address this issue, we introduce MedBench, a comprehensive benchmark for the Chinese medical domain, comprising 40,041 questions sourced from authentic examination exercises and medical reports of diverse branches of medicine. In particular, this benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, the Doctor In-Charge Qualification Examination, and real-world clinic cases encompassing examinations, diagnoses, and treatments. MedBench replicates the educational progression and clinical practice experiences of doctors in Mainland China, thereby establishing itself as a credible benchmark for assessing the mastery of knowledge and reasoning abilities in medical language learning models. We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings: (1) Chinese medical LLMs underperform on this benchmark, highlighting the need for significant advances in clinical knowledge and diagnostic precision. (2) Several general-domain LLMs surprisingly possess considerable medical knowledge. These findings elucidate both the capabilities and limitations of LLMs within the context of MedBench, with the ultimate goal of aiding the medical research community.

View on arXiv
Comments on this paper