ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.13264
19
0

dIR -- Discrete Information Retrieval: Conversational Search over Unstructured (and Structured) Data with Large Language Models

20 December 2023
Pablo M. Rodriguez Bertorello
Jean Rodmond Junior Laguerre
ArXivPDFHTML
Abstract

Data is stored in both structured and unstructured form. Querying both, to power natural language conversations, is a challenge. This paper introduces dIR, Discrete Information Retrieval, providing a unified interface to query both free text and structured knowledge. Specifically, a Large Language Model (LLM) transforms text into expressive representation. After the text is extracted into columnar form, it can then be queried via a text-to-SQL Semantic Parser, with an LLM converting natural language into SQL. Where desired, such conversation may be effected by a multi-step reasoning conversational agent. We validate our approach via a proprietary question/answer data set, concluding that dIR makes a whole new class of queries on free text possible when compared to traditionally fine-tuned dense-embedding-model-based Information Retrieval (IR) and SQL-based Knowledge Bases (KB). For sufficiently complex queries, dIR can succeed where no other method stands a chance.

View on arXiv
Comments on this paper