ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.13461
24
2

FedSZ: Leveraging Error-Bounded Lossy Compression for Federated Learning Communications

20 December 2023
Grant Wilkins
Sheng Di
Jon C. Calhoun
Zilinghan Li
Kibaek Kim
Robert Underwood
Richard Mortier
Franck Cappello
    FedML
ArXivPDFHTML
Abstract

With the promise of federated learning (FL) to allow for geographically-distributed and highly personalized services, the efficient exchange of model updates between clients and servers becomes crucial. FL, though decentralized, often faces communication bottlenecks, especially in resource-constrained scenarios. Existing data compression techniques like gradient sparsification, quantization, and pruning offer some solutions, but may compromise model performance or necessitate expensive retraining. In this paper, we introduce FedSZ, a specialized lossy-compression algorithm designed to minimize the size of client model updates in FL. FedSZ incorporates a comprehensive compression pipeline featuring data partitioning, lossy and lossless compression of model parameters and metadata, and serialization. We evaluate FedSZ using a suite of error-bounded lossy compressors, ultimately finding SZ2 to be the most effective across various model architectures and datasets including AlexNet, MobileNetV2, ResNet50, CIFAR-10, Caltech101, and Fashion-MNIST. Our study reveals that a relative error bound 1E-2 achieves an optimal tradeoff, compressing model states between 5.55-12.61x while maintaining inference accuracy within <0.5% of uncompressed results. Additionally, the runtime overhead of FedSZ is <4.7% or between of the wall-clock communication-round time, a worthwhile trade-off for reducing network transfer times by an order of magnitude for networks bandwidths <500Mbps. Intriguingly, we also find that the error introduced by FedSZ could potentially serve as a source of differentially private noise, opening up new avenues for privacy-preserving FL.

View on arXiv
Comments on this paper