ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.13602
24
3

Peer-to-Peer Learning + Consensus with Non-IID Data

21 December 2023
Srinivasa Pranav
José M. F. Moura
ArXivPDFHTML
Abstract

Peer-to-peer deep learning algorithms are enabling distributed edge devices to collaboratively train deep neural networks without exchanging raw training data or relying on a central server. Peer-to-Peer Learning (P2PL) and other algorithms based on Distributed Local-Update Stochastic/mini-batch Gradient Descent (local DSGD) rely on interleaving epochs of training with distributed consensus steps. This process leads to model parameter drift/divergence amongst participating devices in both IID and non-IID settings. We observe that model drift results in significant oscillations in test performance evaluated after local training and consensus phases. We then identify factors that amplify performance oscillations and demonstrate that our novel approach, P2PL with Affinity, dampens test performance oscillations in non-IID settings without incurring any additional communication cost.

View on arXiv
Comments on this paper