Out-of-distribution (OOD) detection is crucial for ensuring the reliability of deep learning models in real-world applications. Existing methods typically focus on feature representations or output-space analysis, often assuming a distribution over these spaces or leveraging gradient norms with respect to model parameters. However, these approaches struggle to distinguish near-OOD samples and often require extensive hyper-parameter tuning, limiting their practicality. In this work, we propose GRadient-aware Out-Of-Distribution detection (GROOD), a method that derives an OOD prototype from synthetic samples and computes class prototypes directly from In-distribution (ID) training data. By analyzing the gradients of a nearest-class-prototype loss function concerning an artificial OOD prototype, our approach achieves a clear separation between in-distribution and OOD samples. Experimental evaluations demonstrate that gradients computed from the OOD prototype enhance the distinction between ID and OOD data, surpassing established baselines in robustness, particularly on ImageNet-1k. These findings highlight the potential of gradient-based methods and prototype-driven approaches in advancing OOD detection within deep neural networks.
View on arXiv@article{elaraby2025_2312.14427, title={ GROOD: Gradient-Aware Out-of-Distribution Detection }, author={ Mostafa ElAraby and Sabyasachi Sahoo and Yann Pequignot and Paul Novello and Liam Paull }, journal={arXiv preprint arXiv:2312.14427}, year={ 2025 } }