ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.16341
8
0

Harnessing the Power of Federated Learning in Federated Contextual Bandits

26 December 2023
Chengshuai Shi
Ruida Zhou
Kun Yang
Cong Shen
    FedML
ArXivPDFHTML
Abstract

Federated learning (FL) has demonstrated great potential in revolutionizing distributed machine learning, and tremendous efforts have been made to extend it beyond the original focus on supervised learning. Among many directions, federated contextual bandits (FCB), a pivotal integration of FL and sequential decision-making, has garnered significant attention in recent years. Despite substantial progress, existing FCB approaches have largely employed their tailored FL components, often deviating from the canonical FL framework. Consequently, even renowned algorithms like FedAvg remain under-utilized in FCB, let alone other FL advancements. Motivated by this disconnection, this work takes one step towards building a tighter relationship between the canonical FL study and the investigations on FCB. In particular, a novel FCB design, termed FedIGW, is proposed to leverage a regression-based CB algorithm, i.e., inverse gap weighting. Compared with existing FCB approaches, the proposed FedIGW design can better harness the entire spectrum of FL innovations, which is concretely reflected as (1) flexible incorporation of (both existing and forthcoming) FL protocols; (2) modularized plug-in of FL analyses in performance guarantees; (3) seamless integration of FL appendages (such as personalization, robustness, and privacy). We substantiate these claims through rigorous theoretical analyses and empirical evaluations.

View on arXiv
Comments on this paper