Best-of-Both-Worlds Linear Contextual Bandits

This study investigates the problem of -armed linear contextual bandits, an instance of the multi-armed bandit problem, under an adversarial corruption. At each round, a decision-maker observes an independent and identically distributed context and then selects an arm based on the context and past observations. After selecting an arm, the decision-maker incurs a loss corresponding to the selected arm. The decision-maker aims to minimize the cumulative loss over the trial. The goal of this study is to develop a strategy that is effective in both stochastic and adversarial environments, with theoretical guarantees. We first formulate the problem by introducing a novel setting of bandits with adversarial corruption, referred to as the contextual adversarial regime with a self-bounding constraint. We assume linear models for the relationship between the loss and the context. Then, we propose a strategy that extends the RealLinExp3 by Neu & Olkhovskaya (2020) and the Follow-The-Regularized-Leader (FTRL). The regret of our proposed algorithm is shown to be upper-bounded by , where is the number of rounds, is the constant minimum gap between the best and suboptimal arms for any context, and is an adversarial corruption parameter. This regret upper bound implies in a stochastic environment and by in an adversarial environment. We refer to our strategy as the Best-of-Both-Worlds (BoBW) RealFTRL, due to its theoretical guarantees in both stochastic and adversarial regimes.
View on arXiv