ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.16503
13
2

Attention-Enhanced Reservoir Computing

27 December 2023
Felix Köster
Kazutaka Kanno
Jun Ohkubo
Atsushi Uchida
ArXivPDFHTML
Abstract

Photonic reservoir computing has been successfully utilized in time-series prediction as the need for hardware implementations has increased. Prediction of chaotic time series remains a significant challenge, an area where the conventional reservoir computing framework encounters limitations of prediction accuracy. We introduce an attention mechanism to the reservoir computing model in the output stage. This attention layer is designed to prioritize distinct features and temporal sequences, thereby substantially enhancing the prediction accuracy. Our results show that a photonic reservoir computer enhanced with the attention mechanism exhibits improved prediction capabilities for smaller reservoirs. These advancements highlight the transformative possibilities of reservoir computing for practical applications where accurate prediction of chaotic time series is crucial.

View on arXiv
Comments on this paper