ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.16580
11
21

VLCounter: Text-aware Visual Representation for Zero-Shot Object Counting

27 December 2023
Seunggu Kang
WonJun Moon
Euiyeon Kim
Jae-Pil Heo
ArXivPDFHTML
Abstract

Zero-Shot Object Counting (ZSOC) aims to count referred instances of arbitrary classes in a query image without human-annotated exemplars. To deal with ZSOC, preceding studies proposed a two-stage pipeline: discovering exemplars and counting. However, there remains a challenge of vulnerability to error propagation of the sequentially designed two-stage process. In this work, an one-stage baseline, Visual-Language Baseline (VLBase), exploring the implicit association of the semantic-patch embeddings of CLIP is proposed. Subsequently, the extension of VLBase to Visual-language Counter (VLCounter) is achieved by incorporating three modules devised to tailor VLBase for object counting. First, Semantic-conditioned Prompt Tuning (SPT) is introduced within the image encoder to acquire target-highlighted representations. Second, Learnable Affine Transformation (LAT) is employed to translate the semantic-patch similarity map to be appropriate for the counting task. Lastly, the layer-wisely encoded features are transferred to the decoder through Segment-aware Skip Connection (SaSC) to keep the generalization capability for unseen classes. Through extensive experiments on FSC147, CARPK, and PUCPR+, the benefits of the end-to-end framework, VLCounter, are demonstrated.

View on arXiv
Comments on this paper