ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2312.16820
24
5

Catch Me if You Can: Effective Honeypot Placement in Dynamic AD Attack Graphs

28 December 2023
Huy Q. Ngo
Mingyu Guo
Hung Nguyen
    AAML
ArXivPDFHTML
Abstract

We study a Stackelberg game between an attacker and a defender on large Active Directory (AD) attack graphs where the defender employs a set of honeypots to stop the attacker from reaching high-value targets. Contrary to existing works that focus on small and static attack graphs, AD graphs typically contain hundreds of thousands of nodes and edges and constantly change over time. We consider two types of attackers: a simple attacker who cannot observe honeypots and a competent attacker who can. To jointly solve the game, we propose a mixed-integer programming (MIP) formulation. We observed that the optimal blocking plan for static graphs performs poorly in dynamic graphs. To solve the dynamic graph problem, we re-design the mixed-integer programming formulation by combining m MIP (dyMIP(m)) instances to produce a near-optimal blocking plan. Furthermore, to handle a large number of dynamic graph instances, we use a clustering algorithm to efficiently find the m-most representative graph instances for a constant m (dyMIP(m)). We prove a lower bound on the optimal blocking strategy for dynamic graphs and show that our dyMIP(m) algorithms produce close to optimal results for a range of AD graphs under realistic conditions.

View on arXiv
Comments on this paper