ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.00524
38
0

Effect of Optimizer, Initializer, and Architecture of Hypernetworks on Continual Learning from Demonstration

31 December 2023
Sayantan Auddy
Sebastian Bergner
J. Piater
ArXivPDFHTML
Abstract

In continual learning from demonstration (CLfD), a robot learns a sequence of real-world motion skills continually from human demonstrations. Recently, hypernetworks have been successful in solving this problem. In this paper, we perform an exploratory study of the effects of different optimizers, initializers, and network architectures on the continual learning performance of hypernetworks for CLfD. Our results show that adaptive learning rate optimizers work well, but initializers specially designed for hypernetworks offer no advantages for CLfD. We also show that hypernetworks that are capable of stable trajectory predictions are robust to different network architectures. Our open-source code is available at https://github.com/sebastianbergner/ExploringCLFD.

View on arXiv
Comments on this paper