ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.02841
19
3

Multi-Stage Contrastive Regression for Action Quality Assessment

5 January 2024
Qi An
Mengshi Qi
Huadong Ma
ArXivPDFHTML
Abstract

In recent years, there has been growing interest in the video-based action quality assessment (AQA). Most existing methods typically solve AQA problem by considering the entire video yet overlooking the inherent stage-level characteristics of actions. To address this issue, we design a novel Multi-stage Contrastive Regression (MCoRe) framework for the AQA task. This approach allows us to efficiently extract spatial-temporal information, while simultaneously reducing computational costs by segmenting the input video into multiple stages or procedures. Inspired by the graph contrastive learning, we propose a new stage-wise contrastive learning loss function to enhance performance. As a result, MCoRe demonstrates the state-of-the-art result so far on the widely-adopted fine-grained AQA dataset.

View on arXiv
Comments on this paper