ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.02941
13
0

Unsupervised Federated Domain Adaptation for Segmentation of MRI Images

2 January 2024
Navapat Nananukul
Hamid Soltanian-zadeh
Mohammad Rostami
ArXivPDFHTML
Abstract

Automatic semantic segmentation of magnetic resonance imaging (MRI) images using deep neural networks greatly assists in evaluating and planning treatments for various clinical applications. However, training these models is conditioned on the availability of abundant annotated data to implement the end-to-end supervised learning procedure. Even if we annotate enough data, MRI images display considerable variability due to factors such as differences in patients, MRI scanners, and imaging protocols. This variability necessitates retraining neural networks for each specific application domain, which, in turn, requires manual annotation by expert radiologists for all new domains. To relax the need for persistent data annotation, we develop a method for unsupervised federated domain adaptation using multiple annotated source domains. Our approach enables the transfer of knowledge from several annotated source domains to adapt a model for effective use in an unannotated target domain. Initially, we ensure that the target domain data shares similar representations with each source domain in a latent embedding space, modeled as the output of a deep encoder, by minimizing the pair-wise distances of the distributions for the target domain and the source domains. We then employ an ensemble approach to leverage the knowledge obtained from all domains. We provide theoretical analysis and perform experiments on the MICCAI 2016 multi-site dataset to demonstrate our method is effective.

View on arXiv
Comments on this paper