ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.03179
6
11

Multimodal Informative ViT: Information Aggregation and Distribution for Hyperspectral and LiDAR Classification

6 January 2024
Jiaqing Zhang
Jie Lei
Weiying Xie
Geng Yang
Daixun Li
Yunsong Li
ArXivPDFHTML
Abstract

In multimodal land cover classification (MLCC), a common challenge is the redundancy in data distribution, where irrelevant information from multiple modalities can hinder the effective integration of their unique features. To tackle this, we introduce the Multimodal Informative Vit (MIVit), a system with an innovative information aggregate-distributing mechanism. This approach redefines redundancy levels and integrates performance-aware elements into the fused representation, facilitating the learning of semantics in both forward and backward directions. MIVit stands out by significantly reducing redundancy in the empirical distribution of each modality's separate and fused features. It employs oriented attention fusion (OAF) for extracting shallow local features across modalities in horizontal and vertical dimensions, and a Transformer feature extractor for extracting deep global features through long-range attention. We also propose an information aggregation constraint (IAC) based on mutual information, designed to remove redundant information and preserve complementary information within embedded features. Additionally, the information distribution flow (IDF) in MIVit enhances performance-awareness by distributing global classification information across different modalities' feature maps. This architecture also addresses missing modality challenges with lightweight independent modality classifiers, reducing the computational load typically associated with Transformers. Our results show that MIVit's bidirectional aggregate-distributing mechanism between modalities is highly effective, achieving an average overall accuracy of 95.56% across three multimodal datasets. This performance surpasses current state-of-the-art methods in MLCC. The code for MIVit is accessible at https://github.com/icey-zhang/MIViT.

View on arXiv
Comments on this paper