ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.03955
17
15

Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series

8 January 2024
Vijay Ekambaram
Arindam Jati
Pankaj Dayama
Sumanta Mukherjee
Nam H. Nguyen
Wesley M. Gifford
Chandra Reddy
Jayant Kalagnanam
    AI4TS
    VLM
ArXivPDFHTML
Abstract

Large pre-trained models excel in zero/few-shot learning for language and vision tasks but face challenges in multivariate time series (TS) forecasting due to diverse data characteristics. Consequently, recent research efforts have focused on developing pre-trained TS forecasting models. These models, whether built from scratch or adapted from large language models (LLMs), excel in zero/few-shot forecasting tasks. However, they are limited by slow performance, high computational demands, and neglect of cross-channel and exogenous correlations. To address this, we introduce Tiny Time Mixers (TTM), a compact model (starting from 1M parameters) with effective transfer learning capabilities, trained exclusively on public TS datasets. TTM, based on the light-weight TSMixer architecture, incorporates innovations like adaptive patching, diverse resolution sampling, and resolution prefix tuning to handle pre-training on varied dataset resolutions with minimal model capacity. Additionally, it employs multi-level modeling to capture channel correlations and infuse exogenous signals during fine-tuning. TTM outperforms existing popular benchmarks in zero/few-shot forecasting by (4-40\%), while reducing computational requirements significantly. Moreover, TTMs are lightweight and can be executed even on CPU-only machines, enhancing usability and fostering wider adoption in resource-constrained environments. Model weights for our initial variant (TTM-Q) are available at https://huggingface.co/ibm-granite/granite-timeseries-ttm-v1. Model weights for more sophisticated variants (TTM-B, TTM-E, and TTM-A) will be shared soon. The source code for TTM can be accessed at https://github.com/ibm-granite/granite-tsfm/tree/main/tsfm_public/models/tinytimemixer.

View on arXiv
Comments on this paper