ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05133
59
3

Neural Population Learning beyond Symmetric Zero-sum Games

10 January 2024
Siqi Liu
Luke Marris
Marc Lanctot
Georgios Piliouras
Joel Z. Leibo
N. Heess
    MLT
ArXivPDFHTML
Abstract

We study computationally efficient methods for finding equilibria in n-player general-sum games, specifically ones that afford complex visuomotor skills. We show how existing methods would struggle in this setting, either computationally or in theory. We then introduce NeuPL-JPSRO, a neural population learning algorithm that benefits from transfer learning of skills and converges to a Coarse Correlated Equilibrium (CCE) of the game. We show empirical convergence in a suite of OpenSpiel games, validated rigorously by exact game solvers. We then deploy NeuPL-JPSRO to complex domains, where our approach enables adaptive coordination in a MuJoCo control domain and skill transfer in capture-the-flag. Our work shows that equilibrium convergent population learning can be implemented at scale and in generality, paving the way towards solving real-world games between heterogeneous players with mixed motives.

View on arXiv
Comments on this paper