ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05362
6
0

DualTeacher: Bridging Coexistence of Unlabelled Classes for Semi-supervised Incremental Object Detection

13 December 2023
Ziqi Yuan
Liyuan Wang
Wenbo Ding
Xingxing Zhang
Jiachen Zhong
Jianyong Ai
Jianmin Li
Jun Zhu
ArXivPDFHTML
Abstract

In real-world applications, an object detector often encounters object instances from new classes and needs to accommodate them effectively. Previous work formulated this critical problem as incremental object detection (IOD), which assumes the object instances of new classes to be fully annotated in incremental data. However, as supervisory signals are usually rare and expensive, the supervised IOD may not be practical for implementation. In this work, we consider a more realistic setting named semi-supervised IOD (SSIOD), where the object detector needs to learn new classes incrementally from a few labelled data and massive unlabelled data without catastrophic forgetting of old classes. A commonly-used strategy for supervised IOD is to encourage the current model (as a student) to mimic the behavior of the old model (as a teacher), but it generally fails in SSIOD because a dominant number of object instances from old and new classes are coexisting and unlabelled, with the teacher only recognizing a fraction of them. Observing that learning only the classes of interest tends to preclude detection of other classes, we propose to bridge the coexistence of unlabelled classes by constructing two teacher models respectively for old and new classes, and using the concatenation of their predictions to instruct the student. This approach is referred to as DualTeacher, which can serve as a strong baseline for SSIOD with limited resource overhead and no extra hyperparameters. We build various benchmarks for SSIOD and perform extensive experiments to demonstrate the superiority of our approach (e.g., the performance lead is up to 18.28 AP on MS-COCO). Our code is available at \url{https://github.com/chuxiuhong/DualTeacher}.

View on arXiv
Comments on this paper