ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.05385
20
2

Angle-Equivariant Convolutional Neural Networks for Interference Mitigation in Automotive Radar

18 December 2023
Christian Oswald
Máté Tóth
Paul Meissner
Franz Pernkopf
    AAML
ArXivPDFHTML
Abstract

In automotive applications, frequency modulated continuous wave (FMCW) radar is an established technology to determine the distance, velocity and angle of objects in the vicinity of the vehicle. The quality of predictions might be seriously impaired if mutual interference between radar sensors occurs. Previous work processes data from the entire receiver array in parallel to increase interference mitigation quality using neural networks (NNs). However, these architectures do not generalize well across different angles of arrival (AoAs) of interferences and objects. In this paper we introduce fully convolutional neural network (CNN) with rank-three convolutions which is able to transfer learned patterns between different AoAs. Our proposed architecture outperforms previous work while having higher robustness and a lower number of trainable parameters. We evaluate our network on a diverse data set and demonstrate its angle equivariance.

View on arXiv
Comments on this paper