25
2

Bayesian ECG reconstruction using denoising diffusion generative models

Abstract

In this work, we propose a denoising diffusion generative model (DDGM) trained with healthy electrocardiogram (ECG) data that focuses on ECG morphology and inter-lead dependence. Our results show that this innovative generative model can successfully generate realistic ECG signals. Furthermore, we explore the application of recent breakthroughs in solving linear inverse Bayesian problems using DDGM. This approach enables the development of several important clinical tools. These include the calculation of corrected QT intervals (QTc), effective noise suppression of ECG signals, recovery of missing ECG leads, and identification of anomalous readings, enabling significant advances in cardiac health monitoring and diagnosis.

View on arXiv
Comments on this paper