ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.06566
19
0

Maximum Causal Entropy Inverse Reinforcement Learning for Mean-Field Games

12 January 2024
Berkay Anahtarci
Can Deha Kariksiz
Naci Saldi
    AI4CE
ArXivPDFHTML
Abstract

In this paper, we introduce the maximum casual entropy Inverse Reinforcement Learning (IRL) problem for discrete-time mean-field games (MFGs) under an infinite-horizon discounted-reward optimality criterion. The state space of a typical agent is finite. Our approach begins with a comprehensive review of the maximum entropy IRL problem concerning deterministic and stochastic Markov decision processes (MDPs) in both finite and infinite-horizon scenarios. Subsequently, we formulate the maximum casual entropy IRL problem for MFGs - a non-convex optimization problem with respect to policies. Leveraging the linear programming formulation of MDPs, we restructure this IRL problem into a convex optimization problem and establish a gradient descent algorithm to compute the optimal solution with a rate of convergence. Finally, we present a new algorithm by formulating the MFG problem as a generalized Nash equilibrium problem (GNEP), which is capable of computing the mean-field equilibrium (MFE) for the forward RL problem. This method is employed to produce data for a numerical example. We note that this novel algorithm is also applicable to general MFE computations.

View on arXiv
Comments on this paper