In recent times, there has been an increasing awareness about imminent
environmental challenges, resulting in people showing a stronger dedication to
taking care of the environment and nurturing green life. The current 19.6billionindoorgardeningindustry,reflectiveofthisgrowingsentiment,notonlysignifiesamonetaryvaluebutalsospeaksofaprofoundhumandesiretoreconnectwiththenaturalworld.However,severalrecentsurveyscastarevealinglightonthefateofplantswithinourcare,withmorethanhalfsuccumbingprimarilyduetothesilentmenaceofimpropercare.Thus,theneedforaccessibleexpertisecapableofassistingandguidingindividualsthroughtheintricaciesofplantcarehasbecomeparamountmorethanever.Inthiswork,wemaketheveryfirstattemptatbuildingaplantcareassistant,whichaimstoassistpeoplewithplant(−ing)concernsthroughconversations.WeproposeaplantcareconversationaldatasetnamedPlantational,whichcontainsaround1Kdialoguesbetweenusersandplantcareexperts.Ourend−to−endproposedapproachistwo−fold:(i)Wefirstbenchmarkthedatasetwiththehelpofvariouslargelanguagemodels(LLMs)andvisuallanguagemodel(VLM)bystudyingtheimpactofinstructiontuning(zero−shotandfew−shotprompting)andfine−tuningtechniquesonthistask;(ii)finally,webuildEcoSage,amulti−modalplantcareassistingdialoguegenerationframework,incorporatinganadapter−basedmodalityinfusionusingagatedmechanism.Weperformedanextensiveexamination(bothautomatedandmanualevaluation)oftheperformanceexhibitedbyvariousLLMsandVLMinthegenerationofthedomain−specificdialogueresponsestounderscoretherespectivestrengthsandweaknessesofthesediversemodels.