ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07020
19
2

Empowering Medical Imaging with Artificial Intelligence: A Review of Machine Learning Approaches for the Detection, and Segmentation of COVID-19 Using Radiographic and Tomographic Images

13 January 2024
Sayed Amir Mousavi Mobarakeh
K. Kazemi
A. Aarabi
H. Danyali
ArXivPDFHTML
Abstract

Since 2019, the global dissemination of the Coronavirus and its novel strains has resulted in a surge of new infections. The use of X-ray and computed tomography (CT) imaging techniques is critical in diagnosing and managing COVID-19. Incorporating artificial intelligence (AI) into the field of medical imaging is a powerful combination that can provide valuable support to healthcare professionals.This paper focuses on the methodological approach of using machine learning (ML) to enhance medical imaging for COVID-19 diagnosis.For example, deep learning can accurately distinguish lesions from other parts of the lung without human intervention in a matter of minutes.Moreover, ML can enhance performance efficiency by assisting radiologists in making more precise clinical decisions, such as detecting and distinguishing Covid-19 from different respiratory infections and segmenting infections in CT and X-ray images, even when the lesions have varying sizes and shapes.This article critically assesses machine learning methodologies utilized for the segmentation, classification, and detection of Covid-19 within CT and X-ray images, which are commonly employed tools in clinical and hospital settings to represent the lung in various aspects and extensive detail.There is a widespread expectation that this technology will continue to hold a central position within the healthcare sector, driving further progress in the management of the pandemic.

View on arXiv
Comments on this paper