ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.07114
39
4
v1v2 (latest)

Revisiting Sampson Approximations for Geometric Estimation Problems

13 January 2024
Felix Rydell
Angélica Torres
Viktor Larsson
ArXiv (abs)PDFHTML
Abstract

Many problems in computer vision can be formulated as geometric estimation problems, i.e. given a collection of measurements (e.g. point correspondences) we wish to fit a model (e.g. an essential matrix) that agrees with our observations. This necessitates some measure of how much an observation ``agrees" with a given model. A natural choice is to consider the smallest perturbation that makes the observation exactly satisfy the constraints. However, for many problems, this metric is expensive or otherwise intractable to compute. The so-called Sampson error approximates this geometric error through a linearization scheme. For epipolar geometry, the Sampson error is a popular choice and in practice known to yield very tight approximations of the corresponding geometric residual (the reprojection error). In this paper we revisit the Sampson approximation and provide new theoretical insights as to why and when this approximation works, as well as provide explicit bounds on the tightness under some mild assumptions. Our theoretical results are validated in several experiments on real data and in the context of different geometric estimation tasks.

View on arXiv
Comments on this paper