ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.08095
26
1

DurFlex-EVC: Duration-Flexible Emotional Voice Conversion Leveraging Discrete Representations without Text Alignment

16 January 2024
Hyoung-Seok Oh
Sang-Hoon Lee
Deok-Hyun Cho
Seong-Whan Lee
ArXivPDFHTML
Abstract

Emotional voice conversion (EVC) involves modifying various acoustic characteristics, such as pitch and spectral envelope, to match a desired emotional state while preserving the speaker's identity. Existing EVC methods often rely on text transcriptions or time-alignment information and struggle to handle varying speech durations effectively. In this paper, we propose DurFlex-EVC, a duration-flexible EVC framework that operates without the need for text or alignment information. We introduce a unit aligner that models contextual information by aligning speech with discrete units representing content, eliminating the need for text or speech-text alignment. Additionally, we design a style autoencoder that effectively disentangles content and emotional style, allowing precise manipulation of the emotional characteristics of the speech. We further enhance emotional expressiveness through a hierarchical stylize encoder that applies the target emotional style at multiple hierarchical levels, refining the stylization process to improve the naturalness and expressiveness of the converted speech. Experimental results from subjective and objective evaluations demonstrate that our approach outperforms baseline models, effectively handling duration variability and enhancing emotional expressiveness in the converted speech.

View on arXiv
Comments on this paper