ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.09031
15
2

Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation

17 January 2024
Tong Xie
Haoyu Li
Andrew Bai
Cho-Jui Hsieh
    TDI
ArXivPDFHTML
Abstract

Data attribution methods trace model behavior back to its training dataset, offering an effective approach to better understand ''black-box'' neural networks. While prior research has established quantifiable links between model output and training data in diverse settings, interpreting diffusion model outputs in relation to training samples remains underexplored. In particular, diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts, posing a significant challenge to extend existing frameworks to diffusion models directly. Notably, we present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep. This trend leads to a prominent bias in influence estimation, and is particularly noticeable for samples trained on large-norm-inducing timesteps, causing them to be generally influential. To mitigate this effect, we introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest, facilitating a localized measurement of influence and considerably more intuitive visualization. We demonstrate the efficacy of our approach through various evaluation metrics and auxiliary tasks, reducing the amount of generally influential samples to 13\frac{1}{3}31​ of its original quantity.

View on arXiv
Comments on this paper