ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.09492
18
7

Uncertainty-Aware Calibration of a Hot-Wire Anemometer With Gaussian Process Regression

16 January 2024
Rubén A. García-Ruiz
J. Blanco-Claraco
J. López-Martínez
Á. Callejón-Ferre
ArXiv (abs)PDFHTML
Abstract

Expensive ultrasonic anemometers are usually required to measure wind speed accurately. The aim of this work is to overcome the loss of accuracy of a low cost hot-wire anemometer caused by the changes of air temperature, by means of a probabilistic calibration using Gaussian Process Regression. Gaussian Process Regression is a non-parametric, Bayesian, and supervised learning method designed to make predictions of an unknown target variable as a function of one or more known input variables. Our approach is validated against real datasets, obtaining a good performance in inferring the actual wind speed values. By performing, before its real use in the field, a calibration of the hot-wire anemometer taking into account air temperature, permits that the wind speed can be estimated for the typical range of ambient temperatures, including a grounded uncertainty estimation for each speed measure.

View on arXiv
Comments on this paper