137

Land Cover Image Classification

Abstract

Land Cover (LC) image classification has become increasingly significant in understanding environmental changes, urban planning, and disaster management. However, traditional LC methods are often labor-intensive and prone to human error. This paper explores state-of-the-art deep learning models for enhanced accuracy and efficiency in LC analysis. We compare convolutional neural networks (CNN) against transformer-based methods, showcasing their applications and advantages in LC studies. We used EuroSAT, a patch-based LC classification data set based on Sentinel-2 satellite images and achieved state-of-the-art results using current transformer models.

View on arXiv
Comments on this paper