Intelligent Condition Monitoring of Industrial Plants: An Overview of Methodologies and Uncertainty Management Strategies
- AI4CE
Condition monitoring is essential for ensuring the safety, reliability, and efficiency of modern industrial systems. With the increasing complexity of industrial processes, artificial intelligence (AI) has emerged as a powerful tool for fault detection and diagnosis, attracting growing interest from both academia and industry. This paper provides a comprehensive overview of intelligent condition monitoring methods, with a particular emphasis on chemical plants and the widely used Tennessee Eastman Process (TEP) benchmark. State-of-the-art machine learning (ML) and deep learning (DL) algorithms are reviewed, highlighting their strengths, limitations, and applicability to industrial fault detection and diagnosis. Special attention is given to key challenges, including imbalanced and unlabeled data, and to strategies by which models can address these issues. Furthermore, comparative analyses of algorithm performance are presented to guide method selection in practical scenarios. This survey is intended to benefit both newcomers and experienced researchers by consolidating fundamental concepts, summarizing recent advances, and outlining open challenges and promising directions for intelligent condition monitoring in industrial plants.
View on arXiv