ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10284
22
0

MorpheusNet: Resource efficient sleep stage classifier for embedded on-line systems

14 January 2024
Ali Kavoosi
Morgan P. Mitchell
Raveen S. Kariyawasam
John E. Fleming
Penny Lewis
Heidi Johansen-Berg
Hayriye Cagnan
Timothy Denison
ArXivPDFHTML
Abstract

Sleep Stage Classification (SSC) is a labor-intensive task, requiring experts to examine hours of electrophysiological recordings for manual classification. This is a limiting factor when it comes to leveraging sleep stages for therapeutic purposes. With increasing affordability and expansion of wearable devices, automating SSC may enable deployment of sleep-based therapies at scale. Deep Learning has gained increasing attention as a potential method to automate this process. Previous research has shown accuracy comparable to manual expert scores. However, previous approaches require sizable amount of memory and computational resources. This constrains the ability to classify in real time and deploy models on the edge. To address this gap, we aim to provide a model capable of predicting sleep stages in real-time, without requiring access to external computational sources (e.g., mobile phone, cloud). The algorithm is power efficient to enable use on embedded battery powered systems. Our compact sleep stage classifier can be deployed on most off-the-shelf microcontrollers (MCU) with constrained hardware settings. This is due to the memory footprint of our approach requiring significantly fewer operations. The model was tested on three publicly available data bases and achieved performance comparable to the state of the art, whilst reducing model complexity by orders of magnitude (up to 280 times smaller compared to state of the art). We further optimized the model with quantization of parameters to 8 bits with only an average drop of 0.95% in accuracy. When implemented in firmware, the quantized model achieves a latency of 1.6 seconds on an Arm CortexM4 processor, allowing its use for on-line SSC-based therapies.

View on arXiv
Comments on this paper