ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.10805
14
2

Learning to Visually Connect Actions and their Effects

19 January 2024
Eric Peh
Paritosh Parmar
Basura Fernando
ArXivPDFHTML
Abstract

In this work, we introduce the novel concept of visually Connecting Actions and Their Effects (CATE) in video understanding. CATE can have applications in areas like task planning and learning from demonstration. We identify and explore two different aspects of the concept of CATE: Action Selection and Effect-Affinity Assessment, where video understanding models connect actions and effects at semantic and fine-grained levels, respectively. We observe that different formulations produce representations capturing intuitive action properties. We also design various baseline models for Action Selection and Effect-Affinity Assessment. Despite the intuitive nature of the task, we observe that models struggle, and humans outperform them by a large margin. The study aims to establish a foundation for future efforts, showcasing the flexibility and versatility of connecting actions and effects in video understanding, with the hope of inspiring advanced formulations and models.

View on arXiv
Comments on this paper