ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.11467
26
9

Over-Reasoning and Redundant Calculation of Large Language Models

21 January 2024
Cheng-Han Chiang
Hunghuei Lee
    LRM
ArXivPDFHTML
Abstract

Large language models (LLMs) can solve problems step-by-step. While this chain-of-thought (CoT) reasoning boosts LLMs' performance, it is unclear if LLMs \textit{know} when to use CoT and whether those CoT are always necessary to answer the question. This paper shows that LLMs tend to generate redundant calculations and reasoning on a manually constructed math QA dataset, GSM8K-Zero. GSM8K-Zero is constructed such that the questions can be answered without any calculations, but LLMs, including Llama-2 models and Claude-2, tend to generate lengthy and unnecessary calculations to answer the questions. We also conduct experiments to explain why LLMs generate redundant calculations and reasonings. GSM8K-Zero is publicly available at https://github.com/d223302/Over-Reasoning-of-LLMs and https://huggingface.co/datasets/dcml0714/GSM8K-Zero.

View on arXiv
Comments on this paper