ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.11540
43
0

A new flexible class of kernel-based tests of independence

21 January 2024
Marija Cuparić
Bruno Ebner
Bojana Milovsević
ArXiv (abs)PDFHTML
Abstract

Spherical and hyperspherical data are commonly encountered in diverse applied research domains, underscoring the vital task of assessing independence within such data structures. In this context, we investigate the properties of test statistics relying on distance correlation measures originally introduced for the energy distance, and generalize the concept to strongly negative definite kernel-based distances. An important benefit of employing this method lies in its versatility across diverse forms of directional data, enabling the examination of independence among vectors of varying types. The applicability of tests is demonstrated on several real datasets.

View on arXiv
Comments on this paper