59
6

Disentangled Condensation for Large-scale Graphs

Abstract

Graph condensation has emerged as an intriguing technique to save the expensive training costs of Graph Neural Networks (GNNs) by substituting a condensed small graph with the original graph. Despite the promising results achieved, previous methods usually employ an entangled paradigm of redundant parameters (nodes, edges, GNNs), which incurs complex joint optimization during condensation. This paradigm has considerably impeded the scalability of graph condensation, making it challenging to condense extremely large-scale graphs and generate high-fidelity condensed graphs. Therefore, we propose to disentangle the condensation process into a two-stage GNN-free paradigm, independently condensing nodes and generating edges while eliminating the need to optimize GNNs at the same time. The node condensation module avoids the complexity of GNNs by focusing on node feature alignment with anchors of the original graph, while the edge translation module constructs the edges of the condensed nodes by transferring the original structure knowledge with neighborhood anchors. This simple yet effective approach achieves at least 10 times faster than state-of-the-art methods with comparable accuracy on medium-scale graphs. Moreover, the proposed DisCo can successfully scale up to the Ogbn-papers100M graph containing over 100 million nodes with flexible reduction rates and improves performance on the second-largest Ogbn-products dataset by over 5%. Extensive downstream tasks and ablation study on five common datasets further demonstrate the effectiveness of the proposed DisCo framework. Our code is available atthis https URL.

View on arXiv
Comments on this paper