ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12272
120
27

Transfer Learning for Nonparametric Regression: Non-asymptotic Minimax Analysis and Adaptive Procedure

22 January 2024
T. T. Cai
Hongming Pu
ArXiv (abs)PDFHTML
Abstract

Transfer learning for nonparametric regression is considered. We first study the non-asymptotic minimax risk for this problem and develop a novel estimator called the confidence thresholding estimator, which is shown to achieve the minimax optimal risk up to a logarithmic factor. Our results demonstrate two unique phenomena in transfer learning: auto-smoothing and super-acceleration, which differentiate it from nonparametric regression in a traditional setting. We then propose a data-driven algorithm that adaptively achieves the minimax risk up to a logarithmic factor across a wide range of parameter spaces. Simulation studies are conducted to evaluate the numerical performance of the adaptive transfer learning algorithm, and a real-world example is provided to demonstrate the benefits of the proposed method.

View on arXiv
Comments on this paper