ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.12331
29
7

Transfer Learning for Functional Mean Estimation: Phase Transition and Adaptive Algorithms

22 January 2024
T. T. Cai
Dongwoo Kim
Hongming Pu
ArXivPDFHTML
Abstract

This paper studies transfer learning for estimating the mean of random functions based on discretely sampled data, where, in addition to observations from the target distribution, auxiliary samples from similar but distinct source distributions are available. The paper considers both common and independent designs and establishes the minimax rates of convergence for both designs. The results reveal an interesting phase transition phenomenon under the two designs and demonstrate the benefits of utilizing the source samples in the low sampling frequency regime. For practical applications, this paper proposes novel data-driven adaptive algorithms that attain the optimal rates of convergence within a logarithmic factor simultaneously over a large collection of parameter spaces. The theoretical findings are complemented by a simulation study that further supports the effectiveness of the proposed algorithms

View on arXiv
Comments on this paper